
Medical Image Analysis 71 (2021) 102049 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Survey paper 

Applying deep learning in digital breast tomosynthesis for automatic 

breast cancer detection: A review 

Jun Bai a , Russell Posner b , Tianyu Wang 

a , Clifford Yang 

b , c , Sheida Nabavi a , ∗

a Department of Computer Science and Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT 06269, USA 
b University of Connecticut School of Medicine, 263 Farmington Ave. Farmington, CT 06030, USA 
c Department of Radiology, UConn Health, 263 Farmington Ave. Farmington, CT 06030, USA 

a r t i c l e i n f o 

Article history: 

Received 14 September 2020 

Revised 11 February 2021 

Accepted 19 March 2021 

Available online 3 April 2021 

Keywords: 

Digital breast tomosynthesis 

Deep learning 

Review 

a b s t r a c t 

The relatively recent reintroduction of deep learning has been a revolutionary force in the interpretation 

of diagnostic imaging studies. However, the technology used to acquire those images is undergoing a rev- 

olution itself at the very same time. Digital breast tomosynthesis (DBT) is one such technology, which 

has transformed the field of breast imaging. DBT, a form of three-dimensional mammography, is rapidly 

replacing the traditional two-dimensional mammograms. These parallel developments in both the acqui- 

sition and interpretation of breast images present a unique case study in how modern AI systems can be 

designed to adapt to new imaging methods. They also present a unique opportunity for co-development 

of both technologies that can better improve the validity of results and patient outcomes. 

In this review, we explore the ways in which deep learning can be best integrated into breast cancer 

screening workflows using DBT. We first explain the principles behind DBT itself and why it has become 

the gold standard in breast screening. We then survey the foundations of deep learning methods in di- 

agnostic imaging, and review the current state of research into AI-based DBT interpretation. Finally, we 

present some of the limitations of integrating AI into clinical practice and the opportunities these present 

in this burgeoning field. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Breast cancer is the second most common malignancy in 

omen both in the US and worldwide, and causes a significant dis- 

ase burden on the general population; about one in eight women 

ill be diagnosed with it at some point in her life ( Society, 2020 ).

ike many cancers, however, early diagnosis has been repeatedly 

emonstrated to reduce overall disease burden and mortality. As 
Abbreviations: ADMM, Alternating Direction Method of Multipliers; AGD, Average Gla  

ata Systems; BM3D, Block-Matching and 3D Filtering; CAD, Computer-Aided Detection; C  

ography; DBT, Digital Breast Tomosynthesis; DLTG, Dictionary Learning with Temporal G  

nd Drug Administration; FFDM, Full-Field Digital Mammography; FN, False Negative; FO  

esponse ROC; FWHMs, The Full Width at Half Maximum; GGGAN, Gradient Guided cGAN  

nion; IR, reconstruction algorithm; kt-SLR, kt sparse and Low-Rank; L+S, Low-Rank Plus  

andom Forests; MIL, Multiple-Instance Learning; MIoU, Mean Intersection over Union;  

lied histogram matching; ML, Machine Learning; MRI, Magnetic Resonance Image; MS  

MSE, Relative Mean Square Error; ROC, Receiver Operating Characteristic; ROI, Regions  

GD, Stochastic Gradient Descent; SSIM, Structural Similarity Index Measure; STL, Single  

ositive; VOI, Volume of Interest. 
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ndular Dose; AUC, Area under ROC curve; BI-RADS, Breast Imaging-Reporting and

DR, Cancer Detection Rates; CNN, Convolutional Neural Network; CT, Computed To-

radient; DTL, Double Transfer Learning; FBP, Filtered Back Projection; FDA, U.S. Food

M, Figured-of-Merit; FP, False Positive; FPN, Feature Pyramid Network; FROC, Free-

s; HaarPSI, Haar Wavelet-Based Perceptual Similarity Index; IoU, Intersection over

Sparse Matrix Decomposition; mAP, Mean Average Precision; MI-RF, Multi-Instance

MIP, Maximum Intensity Projections; MIP-HM, Maximum Intensity Projections ap-

E, Mean Squared Error; NMS, Non-Maximum Suppression; PVs, Projection Views;

of Interest; RPN, Regional Proposal Network; RR, Recall Rates; s2D, Synthetic 2D;

Transfer Learning; TCIA, The Cancer Imaging Archive; TN, True Negative; TP, True

uch, breast cancer is one of the few cancer types that asymp- 

omatic women are regularly screened for, so that cancers can be 

dentified before clinical signs appear. The classical imaging study 

sed for breast cancer screening has been two-view mammogra- 

hy — currently called full-field digital mammography (FFDM) —

n which two 2D X-ray views of the breast are taken and inter- 

reted by a radiologist. A significant body of research has shown 

hat FFDM has had a significant effect on breast cancer morbidity 
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nd mortality with a greater than 20% reduction in breast cancer 

eaths as a result of regular screening ( Tabár et al., 2011 ). Over

he past decade or so, digital breast tomosynthesis (DBT), a three- 

imensional imaging technique has emerged as the new gold stan- 

ard for digital mammography because of its superior ability to 

apture previously undetected cancers ( Vedantham et al., 2015 ). 

The past decade has also been marked by a revolution in the 

bility of computers using machine learning (ML) methods to solve 

 host of problems in medical imaging. While relatively simplis- 

ic computer-aided detection (CAD) systems have existed in mam- 

ography for several decades now, such systems have traditionally 

een limited in their utility and capability. By contrast, the devel- 

pment of new deep learning methods has been demonstrated to 

etect malignancies on traditional mammograms at the level of, 

r even better than trained radiologists. Despite these gains, the 

pecter of computer detection systems to be able to diagnose in- 

ependently in a clinical trial has not come to fruition, and current 

ocus has remained to the notion of ML systems supporting the ra- 

iologist rather than acting as independent diagnostician. 

However, one major impediment to the adoption of the next 

eneration of CAD systems may be that most imaging modalities 

ave been rigorously tested and validated and exist within a fairly 

igid medical management and delivery model. As a result, most 

eep learning systems for interpreting images must be “tacked on”

o existing workflows. Digital breast tomosynthesis is different in 

his regard. While clinical trials have shown the diagnostic supe- 

iority of DBT over FFDM overall ( Ciatto et al., 2013; Haas et al.,

013; Skaane et al., 2018; 2019; Greenberg et al., 2014; Sharpe 

t al., 2015; McDonald et al., 2016; Nam et al., 2015 ), the pre-

ise ways to efficiently acquire, reconstruct, interpret, and report 

BT studies are still being developed by different physicians and 

ractices. Hence, DBT presents a unique opportunity for the co- 

evelopment of these best practices in tandem with novel ML/AI- 

ased CAD systems from the ground up, and we believe that DBT 

ill be one of the imaging modalities which will seamlessly in- 

egrate deep learning technology into all levels of the DBT acquisi- 

ion and analysis workflow. In recent years, there are lots of studies 

bout the state of art in DBT not only in radiology field but also in

I field ( Vedantham et al., 2015 ). 

In this review, we will examine the current state of both DBT 

s a clinical imaging study and deep-learning based DBT analysis 

nd decision support systems. Along the way, we will present par- 

icular challenges and opportunities in both aspects and how the 

wo technologies (DBT and deep learning) can help get us closer 

o the long-promised integration of modern AI with medical imag- 

ng technology. 

. Digital breast tomosynthesis 

.1. Technique 

The methodology of DBT is quite similar to that of traditional 

FDM. In FFDM, the breast is compressed between a pair of pad- 

les with the X-ray detector below, while the X-ray emitter is 

laced above the paddle and oriented perpendicular to the detec- 

or. Two images of each breast are typically taken, the craniocau- 

al (CC) and mediolateral oblique (MLO) views ( Fig. 1 A). Because 

he breast is compressed significantly and is directly against the 

etection plate, these images can achieve resolutions and contrast 

anges far greater than most conventional radiography techniques 

ith a relatively low radiation dose (called average glandular dose 

r AGD). 

However, one of the drawbacks of traditional FFDM is that 

he 2D view can create tissue artefacts from the summation of 

ealthy dense breast tissue itself which may mimic malignant le- 

ions ( Poplack et al., 2007 ). Digital breast tomosynthesis aims to 
2 
olve this problem by capturing multiple images obtained by ro- 

ating the X-ray emitter over the compressed breast to obtain a 

eries of projection views (PVs). Reconstruction and angle options 

ary, but common instruments use these PVs to build a z-Stack 

f parallel slices in the same standard CC and MLO views ( Fig. 1 B)

 Vedantham et al., 2015 ). This system represents a compromise: al- 

hough the range of PVs is limited, the necessary resolution and 

ontrast are largely maintained by keeping the breast fixed and 

ompressed against the detector. 

.2. DBT as a replacement for traditional FFDM 

Over the past two decades, several clinical trials have demon- 

trated that DBT increases cancer detection rates (CDR) while de- 

reasing recall rates (RR) when compared to FFDM. Early studies 

emonstrated this improvement when comparing DBT with FFDM 

o FFDM alone ( Ciatto et al., 2013; Haas et al., 2013; Skaane et al.,

018; 2019 ). A series of retrospective studies demonstrated that 

BT was more effective as a stand-in replacement for FFDM alto- 

ether ( Greenberg et al., 2014; Sharpe et al., 2015; McDonald et al., 

016 ), with DBT being able to find cancers which were entirely 

issed on FFDM ( Nam et al., 2015 ). 

Given these consistent findings on clinical trials, one would 

magine that DBT implementation and workflows would be simi- 

arly consistent across radiology practices. The reality is that indi- 

idual practice adoption and interpretation workflows vary widely 

 Gao et al., 2017; Ebuoma et al., 2015; Freer et al., 2017; Miglioretti 

t al., 2019 ). While many factors, such as cost and demographics 

nfluence the adoption of DBT, this heterogeneity in usage presents 

 unique opportunity for AI systems to help develop DBT best prac- 

ices from the ground up. In our discussion, we will broadly focus 

n two main problem-domains - cancer detection and image re- 

onstruction - with contextualized clinical examples of each. 

.3. Computer-aided detection 

The concept and implementation of CAD systems in mammog- 

aphy date back several decades. In fact, both the first U.S. Food 

nd Drug Administration (FDA)-approved and the first Medicare- 

eimbursed CAD systems in radiology as a whole were for mam- 

ography screening. Such tools were typically built by devising 

umerical and statistical representations of common breast ab- 

ormalities such as microcalcifications, spiculations, and masses 

hich were then hand-tuned to the specific mammographic in- 

trumentation. Early trials showed promise for CAD, especially 

n the double-reading paradigm for FFDM common in Europe 

 Cupples et al., 2012; Doi, 2007; Dean and Ilvento, 2012 ). Ulti- 

ately, however, large-scale studies have suggested that the value 

f traditional CAD systems is equivocal at best, and CAD has fallen 

ut of favor in many breast clinics ( Lehman et al., 2015 ). 

Over the past decade, as DBT has begun to replace FFDM in 

any clinics, insurance companies have been less willing to pay 

 premium for CAD tools, leading to a relative drop-off in their 

se in the breast clinic ( Nishikawa and Bae, 2018 ). Nonetheless, 

wo key factors have driven a renaissance in CAD systems: reading 

imes and deep learning. Compared to FFDM, radiologist interpre- 

ation of DBT studies takes about twice as long, limiting the ability 

o screen as many patients due to reader fatigue. In conjunction 

ith modern image analysis techniques, deep-learning CAD (AI- 

AD) systems have proven to be useful in reducing reading times 

ithout significantly affecting sensitivity, specificity, RRs or CDRs, 

roducing reductions in reading times from 14–40% ( Chae et al., 

019; Balleyguier et al., 2017; Benedikt et al., 2017 ). 

While at least one AI-CAD system is currently FDA-approved for 

se in the clinic, the overall added benefit is unclear; prior studies 

xplicitly include caveats that systems can identify masses but not 
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Fig. 1. a. In a standard 2D mammogram, the X-ray (XR) emitter takes an ordinary radiograph captured by a digital XR detector plate. Two views are captured, the craniocaudal 

(CC) and mediolateral oblique (MLO). b. In DBT imaging, the XR emitter travels in an arc over the breast so that the detector captures multiple images (projection views). 

These images are fed into a reconstruction algorithm to produce a volumetric “z-Stack” and a synthesized 2D mammogram to be reviewed by the radiologist. DBT also 

typically captures both the CC and MLO views (only CC pictured). 
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ther potential signs of malignancy such as microcalcifications and 

rchitectural distortions ( Balleyguier et al., 2017; Benedikt et al., 

017 ). 

.4. Synthetic mammography 

Whether using DBT or FFDM, effective cancer detection in 

ammography depends on the use of one or more prior imaging 

tudies to identify new breast changes which may indicate malig- 

ancy ( Hakim et al., 2015; Hayward et al., 2016 ). In order to allow

eaders to compare DBT studies with prior FFDM images, a vari- 

ty of techniques have been developed to generate “synthetic 2D”

s2D) mammograms. Although the DBT technology would seem 

o include ordinary FFDM images as part of its acquisition, each 

BT image is actually relatively low resolution. Unlike FFDM, each 

BT PV uses a lower radiation dose and does not use an anti- 

catter grid to filter out reflected and/or refracted x-rays. While 

here were some initial hurdles involved, several recent studies 

ave confirmed that DBT-s2D has similar CDRs with reduced RRs 

hen compared to a combined study using DBT and FFDM (DBT- 

FDM) or FFDM alone while also reducing AGD ( Lai et al., 2018; 

ujero et al., 2017; Choi et al., 2019; Freer et al., 2017 ). 

However, the development of s2D mammography illustrates 

ne of the key open questions in the optimization of DBT interpre- 

ation: namely, what is the ideal synthetic image (for both humans 

nd computers)? Current FDA-approved s2D systems (e.g. C-View 

y Hologic and V-Preview by GE) do not actually attempt to con- 

truct a true approximation of an original FFDM image, but rather 

se information from the collected PVs to create an “enhanced” 2D 

iew which is meant to guide the reader through the DBT study 

 Smith, 0 0 0 0; GE Corporation, 2021 ). In clinical practice, such ap-

roximations create their own set of unique advantages and arti- 

acts which the reader must be aware of ( Zuckerman et al., 2017 ). 

.5. Translating to the computational domain 

Analysis of DBT volumes is a distinctly different task from many 

ommonly-studied image analysis tasks, so understanding how the 

oals of such work translate over to the deep learning domain is 

ritical. 
3 
For example, accurate reading of studies requires very high res- 

lution ( > 1 M pixels), high grayscale dynamic range and contrast, 

ncorporation of prior studies and medical records, and specialized 

raining in image interpretation and clinical decision-making. In 

ontrast, popular deep learning models currently used for image 

lassification have inputs that are roughly an order of magnitude 

ess in both spatial resolution and image contrast ( Table 1 ). 

Another challenge unique to the interpretation of breast can- 

er screening is the low prevalence of malignancy: only about 0.6% 

f screening mammograms contain malignancies. Because deep 

earning algorithms depend on large training data sets, it is un- 

nown whether models should be trained using real-world data 

with inherent low number of malignancies — or enriched data 

ets. With less than 1% of screening studies containing true ma- 

ignancies, a system trained on population-level data will see rela- 

ively few malignant studies and may tend to under-diagnose. On 

he other hand, using training data which is enriched with malig- 

ancies may train a model to over-diagnose cancers; a common 

roblem in current breast cancer screening programs ( Miller et al., 

014; Kalager et al., 2012 ). 

While these and other concerns factor into the setup and train- 

ng of deep learning models, the general problems to be addressed 

y any deep learning model are relatively straightforward. Broadly, 

ne can break the problem of clinically useful malignancy detec- 

ion into a hierarchy of sub-problems: 

1. Determining if a study contains an abnormality concerning for 

malignancy. 

2. Locating the center of such an abnormality for either review by 

a human reader or for a follow-up study or biopsy. 

3. Classifying the abnormality itself. 

4. Making follow-up clinical decisions based on the identified and 

classified abnormality (if present). 

In machine learning terms, the first task can be considered ei- 

her an “anomaly detection” or a “classification” problem. The sec- 

nd task is one of “object localization” or “segmentation,” while 

he third is a classification problem on a sub-region of the entire 

mage. The fourth task is a very interesting problem, which may 

e considered to be a multi-class classification problem. This task 

as not been studied in great detail, and will be reserved for our 

iscussion of future challenges and opportunities. With these sub- 



J.
 B

a
i,
 R

.
 P

o
sn

er,
 T.

 W
a

n
g
 et

 a
l.
 

M
ed

ica
l
 Im

a
g

e
 A

n
a

ly
sis

 7
1
 (2

0
2

1
)
 10

2
0

4
9
 

Table 1 

Deep learning models used in biomedical image analysis. 

Model Input size Layers Total parameters Modality Organ Modality reference Evaluation metrics 

Image 

classification 

LeNet ( LeCun et al., 

1998 ) 

32 × 32 6 60,000 CT X-ray MRI chest breast kidney Khan and Yong (2017) ; 

Gastounioti et al. (2018) 

AlexNet ( Razzak et al., 

2017 ) 

224 × 224 × 3 8 61 M CT X-ray MRI chest breast kidney 

heart 

Gastounioti et al. (2018) ; 

Lakhani and Sundaram (2017) ; 

Lévy and Jain (2016) 

Accuracy ROC F1 

Precision Recall 

GoogleLeNet 

( Szegedy et al., 2015 ) 

224 × 224 × 3 22 4 M X-ray MRI breast heart Gastounioti et al. (2018) 

VGG16 ( Simonyan and 

Zisserman, 2015 ) 

224 × 224 × 3 41 138 M X-ray breast Shen et al. (2019) 

ResNet(2015) 

( He et al., 2015 ) 

224 × 224 × 3 34/50/101 Over 23 M X-ray chest breast Shen et al. (2019) 

Model Module Learning Loss function Modality Organ Modality reference Evaluation matrix 

Object 

detection 

faster-RCNN 

( Ren et al., 2016 ) 

Convnet/ RPN SGD (Stochastic 

gradient descent) 

log loss + bbox regression X-ray CT chest brain breast Ribli et al. (2018) ; 

Rahmat et al. (2019) ; 

Ezhilarasi and 

Varalakshmi (2018) 

Mean Average 

Precision Intersection 

over Union 

YOLO ( Redmon et al., 

2016 ) 

Convnet SGD sum squared error + bbox 

regression + object 

confidence + background 

confidence 

X-ray chest breast Al-masni et al. (2018) ; 

Ozturk et al. (2020) ; 

Cao et al. (2019) 

RetinaNet ( Lin et al., 

2017 ) 

Feature 

pyramid 

network 

SGD Focal loss X-ray CT liver breast Zlocha et al. (2019) ; 

Lotter et al. (2019) 

Model Backbone/ 

Base model 

Type Loss function Modality Organ Modality reference Evaluation matrix 

Image 

segmentation 

mask-RCNN ( He et al., 

2018 ) 

R-CNN Instance log loss + smoth L1 + 

pixel wise cross entropy 

CT X-ray MRI brain breast, liver Thang et al. (2021, 2021) Pixel accuracy 

Intersection over 

Union Mean-IoU Dice 

coefficient 

U-Net 

( Ronneberger et al., 

2015 ) 

Autoencoder Semantic pixel wise cross entropy X-ray CT breast liver Lai et al. (2020) ; 

Chlebus et al. (2018) 

attention U-Net 

( Oktay et al., 0000 ) 

Autoencoder Semantic pixel wise cross entropy X-ray CT liver breast Li et al. (2019) 

FCN ( Long et al., 2015 ) VGG Instance pixel wise cross entropy CT liver Ben-Cohen et al. (2016) 

4
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roblems in mind, we turn our attention to the current tools and 

echniques which have been used to solve these tasks. 

. Current deep learning methods 

Deep learning models are a subset of machine learning models 

ocused on allowing a model to design itself to extract features for 

he underlying task. Features of an object are object’s characteris- 

ics, such as edges, lines, and shapes that can be quantified and 

herefore represent the object. The quantified features are used to 

nalyze the object and perform a particular computational task. 

he learning process is achieved by assigning weights or param- 

ters of a model after many iterations such that the model is opti- 

ized for a given task — also called training. 

In the field of mammography, traditional CAD systems rely pri- 

arily on non-deep learning methods, in which features are hand- 

ngineered to calculate quantities such as the degree of calcifica- 

ion, spiculation, or distortion. In this setup, conventional classi- 

cation methods such as regression models are fitted to identify 

ormal, benign, and malignant mammogram images. 

By contrast, the underlying principle of supervised deep learn- 

ng (training requires ground truth label) is giving the computer 

any labeled images and then allowing it to determine its own set 

f classifying features that may or may not correspond to human- 

nterpretable features. 

The “depth” of these systems corresponds to the system’s capa- 

ility to combine basic values, such as pixel locations and inten- 

ities, into sophisticated, non-linear features to better extract local 

nd global attributes from images. In medical image analysis, deep 

earning has been successfully applied to many different modal- 

ties, including Computed Tomography (CT), Magnetic Resonance 

mage (MRI), X-ray and conventional radiographs ( Razzak et al., 

018 ). 

In deep learning breast cancer diagnostic, the term “cancer de- 

ection” is an umbrella term, referring to several different tasks in- 

luding: 

Classification. Identifying the probability of the entire image as 

“normal”, “benign” or “malignant.” Some methods even seek 

to identify the precise type of a malignancy’s probability. 

Object detection. Locating any suspicious or abnormal regions 

of an image and presenting them to the end-user. 

Segmentation. Labeling individual pixels as normal or patho- 

logical by combining object detection and classification. 

.1. Deep learning - building blocks 

The advantages of deep learning compared to classical ML are 

wo-fold. First, they have many tunable parameters that allow 

hem to derive much richer and more complex representations of 

bjects. Second, they have a highly modular structure, with a set 

f interchangeable blocks which makes them easy to design and 

mplement. 

There are many types of deep learning models including Deep 

eural Networks (DNNs), Autoencoders (AEs), Deep Belief Net- 

orks (DBNs), Deep Convolution Neural Networks (CNNs), Recur- 

ent Neural Networks (RNNs) and Generative Adversarial Networks 

GANs). All these models can be applied to the tasks of image clas- 

ification, object localization/detection, and image segmentation. 

owever, because they encode the spatial relationships among pix- 

ls in an image, CNN-based deep learning models are mostly used 

n image analysis. A number of popular deep learning models used 

n biomedical image analysis and their general structures are sum- 

arized in Table. 1 . For the classification task, CNN ( Fig. 2 a) is the

ajor model used in medical image cancer classification. U-Net 

 Fig. 2 b) and Faster RCNN ( Fig. 2 c) are the models often used in
5 
edical image segmentation and object detection (they both are 

NN-based models). 

.1.1. Layer 

The major components of a CNN-based model are convolution 

 LeCun et al., 1998 ), dropout ( Srivastava et al., 2014 ), batch normal-

zation ( Ioffe and Szegedy, 2015 ), dense (fully connected) and pool- 

ng layers ( Ranzato et al., 2007 ) as explained in Table. 2 . Although

he main operation of CNNs is convolution, additional network 

omponents (layers) have made the overall model more tractable, 

fficient, and accurate. 

.1.2. Loss functions 

Training supervised deep neural networks depends critically on 

he choice of loss functions ( Table 3 ). A loss function measures the 

ifference between the output from the network and the underly- 

ng ground truth. The choice of the loss function directly impacts 

he model generalization capability and performance. In general, 

oss functions can be categorized into two main groups: classifi- 

ation loss functions and regression loss functions. In classification 

asks, the goal is to predict to which class a sample belongs. There- 

ore, classification loss measures the error between the predicted 

lasses and ground truth classes. In regression, the goal is to use 

nput samples to predict continuously-valued outputs. Regression 

oss functions measure the error between these predicted numeri- 

al values and the values of the ground truth. 

Depending on the deep learning models and their tasks, the 

oss function can be selected from regression and classification loss 

unctions or a combination of both. Deep learning DBT image anal- 

sis application’s loss function for cancer detection can be catego- 

ized into three types: classification loss, object detection loss, and 

egmentation loss (the detailed information of these loss functions 

re described in the supplementary material file). The commonly 

sed loss functions for the aforementioned three types are sum- 

arized in Table 3 . 

.1.3. Evaluation metrics 

The common evaluation metrics for classification are accuracy, 

alse positive rate, false negative rate, precision, recall, F1 score, 

eceiver Operating Characteristic (ROC) curve, Area under ROC 

urve (AUC), Precision-Recall (PR) curve, Average Precision (AP) and 

ean Average Precision (mAP). For object detection models, the 

requent evaluation metrics are mAP, Intersection over Union (IoU), 

recision, recall, and Non-Maximum Suppression (NMS). Intersec- 

ion over Union evaluates the overlap between a predicted candi- 

ate bounding box and a ground truth bounding box. Ideally, the 

redicted candidate bounding box should perfectly overlap with 

he ground truth bounding box, such that IoU is equal to 1. NMS is 

 technique to select the best bounding box over an object for mAP 

valuation. In other words, the mAP is computed after NMS. The 

ommon evaluation metrics for segmentation models are pixel ac- 

uracy, mean pixel accuracy, Mean Intersection over Union (MIou) 

nd Dice Score. For non-classification tasks, particularly image gen- 

ration and denoising, the most commonly-used metrics include 

tructural Similarity Index Measure (SSIM), and Contrast-to-Noise 

atio (CNR). 

.2. Representative models 

The previously-outlined components and methods are mixed 

nd matched in a multitude of ways to generate useful deep learn- 

ng models. In order to understand the principles behind the novel 

odel structures that have been applied in DBT analysis, it is use- 

ul to understand the details of a few representative models for 

ach diagnostic task, as most of the surveyed models are variations 

f these core types. 
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Fig. 2. Structure of deep learning models. a. CNN model-is often used for the classification task. The model typically builds by convolutional blocks that contain convolutional 

layers, pooling layers, and normalization layers. The outputs of a CNN model are class probabilities. b. U-Net model is often used for segmentation tasks. In the down sample 

stage, heights and weights of feature dimensions are decreasing, and depth is increasing. In the up sample stage, the feature heights and weights are increasing, and depth 

is decreasing. The output of this model is the mask of the segmented tumor. c. Faster RCNN model-is often used for object detection tasks. The CovNet typical CNN model 

which generate features and feed into RPN. Region Proposed Network outputs a set of proposed objects which feed to parallel branches for classification and bounding box 

(bbox) regression. d. GAN-is often used to generate simulated data. The generator produces simulated data which will be determined by the discriminator as real or fake. 

Table 2 

Core components of a CNN-based deep learning model. 

Hyperparameters Input Output Type Function 

Convolution Layer Kernel size/strides/ 

padding 

3D tensor 3D tensor 1D conv/2D conv/ 3D conv Extract features 

Pooling Layer Pool size/padding 3D tensor Reduced 3D tensor Max pooling/average 

pooling/global average 

pooling 

Extract features/reduce 

dimension 

Normalization 

Layer 

Momentum/ 

epsilon/beta 

Arbitrary same shape as input Batch norm/layer 

norm/instance norm/group 

norm 

Standardize input 

Dense Layer Number of nodes n dimension tensor n dimension tensor – Regular fully connected 

layer 

Dropout Layer Rate Arbitrary same shape as input – Prevent model over fit 

Activation Layer Activation function Arbitrary same shape as input ReLU/sigmoid/Tanh/ 

softmax/leaky ReLU/binary 

step 

Applies activation function 

to previous layer 
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.2.1. Classification - CNN 

The most established algorithm — among a variety of deep 

earning models — for medical image classification is CNN 

 Gastounioti et al., 2018; Abdelhafiz et al., 2019; Lakhani and Sun- 

aram, 2017; Shen et al., 2019 ). Fig. 2 .a shows a schematic diagram

f a basic CNN model. A CNN model uses grid-patterned data, such 

s images, as inputs and learns features from low to high levels 

ased on trained weights ( LeCun et al., 1998 ). Regardless of the 

pecific task, using deep learning and the development of CNNs 

as played a pivotal role in medical image analysis ( LeCun et al., 

998 ). 

More specifically, convolution layers are fundamental for CNNs. 

onvolution layers perform feature extraction by applying convo- 

ution process through filter kernels defined by height, weight and 

epth shifted over each layer. The size of a filter kernel, typically, 

s 3 × 3 , 5 × 5 or 7 × 7 . Pooling layers are used for down sam-

ling the feature maps after the convolution layer, in order to re- 

uce the dimension of features. The most favored pooling oper- 

tion is max pooling which is used to select the maximum ac- 
6 
ivated neuron from previous feature maps as input to the next 

ayer. A common alternative pooling operation is average pooling, 

hich uses the average activation values of neighboring neurons 

s input to the next layer. A fully connected layer, also known 

s a dense layer, connects all neurons between two layers. To re- 

uce the high-dimensional output from the preceding layer, the 

eatures extracted from the last convolution layer are flattened 

o a vector representation which is the input to the next dense 

ayer. 

Finally, the fully connected layer will be mapped to output, and 

 probabilistic distribution activation function such as the sigmoid 

unction will be applied to predict the output classes’ probabilities. 

One major challenge associated with employing CNNs for ana- 

yzing medical images is the dependency of CNNs on a large num- 

er of training images. However, the sizes of medical image data 

ets are often small, and labeling data is time-consuming — require 

ignificant time and effort from trained experts. In recent research, 

ne of the well known topics is transfer learning which stores the 

earned weights from task A and uses it to train another task B to 
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Table 3 

Loss functions of commonly used deep learning models. 

Name Equation Variable definition 

Image classification Cross-Entropy l(y, ̂  y ) = − ∑ n 
i y i log ̂  y i • n number of classes 

• y is ground truth (GT) classes 

Binary cross-entropy 

(log loss) 

l(y, ̂  y ) = −(y log ( ̂ y ) + (1 − y ) log (1 − ˆ y )) • ˆ y is predicted classes probability 

Object detection Smooth L 1 loss smoothL 1 = 

{
0 . 5 f 2 | f | ≤ 1 

| f | − 0 . 5 otherwise 
• f is difference between predicted value and ground 

• m is anchor index 

faster-RCNN l(y m , t m ) = L cls (y m , y 
∗
m ) + λy ∗m L reg (t m , t 

∗
m ) • y m is predicted probability of anchor i 

• y ∗m is 1 if anchor is positive; else 0 

• t m is coordinates of predicted bounding box (bbox) 

• t ∗m is bbox GT of positive anchor 

YOLO l 1 = λcoord 

∑ s 2 

i =0 

∑ B 
j=0 L 

ob j 
i j 

[(x i − ˆ x i 
2 
) + (y i − ˆ y i ) 

2 ] 

+ λcoord 

∑ s 2 

i =0 

∑ B 
j=0 L 

obj 

ij 
[( 

√ 

w i −
√ 

ˆ w i 

2 
) + ( 

√ 

h i −
√ 

ˆ h i ) 
2 

] 

+ 

∑ s 2 

i =0 L 
obj 

ij 

∑ B 
j=0 [( ( p i ( n ) − ˆ p i (n )) 

2 
] 

+ 

∑ s 2 

i =0 

∑ B 
j=0 L 

ob j 
i j 

[(C i − ˆ C i 
2 
)] 

+ λcoord 

∑ s 2 

i =0 

∑ B 
j=0 L 

noobj 
i j 

[(C i − ˆ C i 
2 
)] 

• λ is weighted parameter for balancing 

• x i , y i is bbox’s center coordinate GT 

• ˆ x i , ̂  y i is bbox’s center coordinate prediction 

• w i , h i is bbox’s width and height GT 

• ˆ w i , ̂
 h i is bbox’s width and height GT 

• n is classes 

• C i is confidence score of if there is object 

• ˆ C i is 1 if there is object, else 0 

• p i is class prediction, ˆ p i is class GT 

• s number of cells in bbox 

• B number of bbox 

• p t is prediction if y = 1 , else p t is (1 − prediction ) 

RetinaNet F L (p t ) = −(1 − p t ) γ log (p t ) 

Image segmentation mask-RCNN l = L cls + L box + L mask • L cls is log loss same as faster RCNN 

• L box is smooth L 1 same as faster RCNN 

• L mask is pixel-wise cross entropy 

U-Net E = 

∑ 

x ∈ � ω(x ) log (p l(x ) (x )) • x is pixel position 

• l is truth label of each pixel 

• ω weight for important pixels 
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nhance the deep neural networks’ performance ( Yosinski et al., 

014 ). Many well-known models trained on natural image data 

ets are available for transfer learning such as LetNet( LeCun et al., 

998 ), AlexNet, VGG, and GoogleNet (which are spatial exploitation 

ased CNNs), ResNet, Inception-V3, and Inception-V4 (which are 

epth based CNNs), DenseNet (which is multi-path based CNNs), 

esidual Attention Neural Network, and the Convolutional Block 

ttention network (which are attention-based CNNs) ( Khan et al., 

020 ). 

.2.2. Object detection - faster RCNN 

One typical medical image analysis task is object detection, and 

aster RCNN is the most common model for this task ( Fig. 2 c.).

he Faster RCNN model contains a few components: ConvNet, re- 

ion proposed network (RPN), and multi-task branches. The Con- 

Net, which is a particular CNN model, outputs a set of feature 

aps. The RPN takes the ROI selected based on anchors over the 

eature maps generated from ConvNet, and outputs a set of pro- 

osed objects. In other words, the ROI from ConvNet will feed into 

wo parallel branches. One branch — typically employs few fully 

onnected layers — is for bounding box (bbox) regression, and the 

ther branch is for classification of the objects inside the bound- 

ng boxes. Anchors are proposed bounding boxes around a pixel by 

articular scales (size of ROI) and aspect ratios ( width ROI / height ROI ). 

or example, if a feature map dimension is n × m, and there are k 

nchor boxes. In total, RPN will propose n × m × k ROI. 

.2.3. Segmentation - U-Net 

U-net is a deep learning model widely used in medical image 

nalysis for segmentation ( Ronneberger et al., 2015 ). It has a sim- 

lar structure as an autoencoder network ( Rumelhart and McClel- 

and, 1987 ) and similar components as CNNs. There are two stages 

or U-net: down sampling and up sampling as shown in Fig. 2 b. 

he down sampling stage, also known as contracting path, follows 

he typical structure of CNNs for learning the features and making 
7 
 copy of features for the up sampling stage. In the up sampling 

tage, which is also known as expansive path, the copied features 

rom contracting path are concatenated and expanded to get to the 

imension of the original inputs. 

.2.4. Generative modeling - GAN 

In addition to analyzing images, one of the more recent break- 

hroughs in deep learning is the development of models which 

an generate new images based on a set of training data. As we 

ill discuss, one major application of these models in DBT is for 

on-diagnostic tasks such as image reconstruction and artefact re- 

oval; however, several such models have also been cleverly ap- 

lied to perform diagnostic tasks in DBT studies. In order to un- 

erstand the nuances of such studies, we outline the mechanism 

ehind one classical generative model, the generative adversarial 

etwork (GAN). 

The GAN was first introduced in 2014 ( Goodfellow et al., 2014 ) 

o generate realistic new photographs that have identical realistic 

haracteristics as the training data set. A GAN model ( Fig. 2 d) is

 generative model, which is mostly used for generating instances 

f data that have the same distribution as the original data. The 

AN model consists of two parts, the generator and the discrimi- 

ator, which are both deep networks. The generator is used to gen- 

rate synthetic samples, while the discriminator is used to classify 

he fake samples from the real ones. A well trained GAN model 

an generate plausible data that cannot be distinguished by the 

iscriminator. A GAN model is prevalent for generating simulated 

edical images. It has been widely applied to different types of 

edical image modalities such as X-ray, CT and MRI ( Lei et al., 

019; Shin et al., 2018; Nie et al., 2018; Frid-Adar et al., 2018; Bi 

t al., 2017; Yi et al., 2019; Yang et al., 2018; Wu et al., 2019; Yu

t al., 2020; Zhang et al., 2019 ). Several variations of the GAN have

een proposed for different purposes. One of them is the condi- 

ional GAN. The conditional GAN(cGAN) is the extension of GAN 

hat added extra information as a condition to both generator and 
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Table 4 

Summary of deep learning DBT studies: only deep learning applied on DBT are included. 

Reference Transfer learning Augmentation Dataset ∗ Data type ∗ # data ROI/Patch/Image ∗ Size Evaluation metric Best results 

Classification 

Fotin et al. (2016) � pv t ST A 344 R 256 × 256 Sensitivity 0.93 

Kim et al. (2016) � pv t ST A 160 R 32 × 32 AUC 0.847 

Yousefi et al. (2018) � pv t ST A 87 I 256 × 256 AUC 0.87 

Samala et al. (2018) � � pv t ST A 324 R 128 × 128 AUC 0.90 

Zhang et al. (2018) � � pv t ST A 3290 I 832 × 832 AUC 0.6632 

Liang et al. (2019) � � pv t ST A 1124 I 1024 × 1024 AUC 0.97 

Zhang et al. (2019) � � pv t ST A 3290 I 1024 × 1024 AUC 0.854 

Mendel et al. (2019) � pv t s 2 D PRJ 78 R 512 × 512 AUC 0.89 

Singh et al. (2020) � � pv t ST A 68,311 P 512 × 512 AUC 0.847 

Li et al. (2020a) � � pv t ST A 927 R 256 × 256 AUC 0.99 

Matthews et al. (2020) � � pv t s2D 78,445 I 416 × 320 AUC 0.97 

Rodriguez-Ruiz et al. (2018) pv t RCS 956 P 29 × 29 AUC 0.88 

Object detection and segmentation 

Fan et al. (2019) � pv t ST A 182 R, I – AUC 0.96 

Lotter et al. (2019) � � pv t ST A 24,253 I – AUC 0.945 

Lai et al. (2020) � � pv t ST A 87 P – AUC 0.859 

Swiecicki et al. (2020) pv t ST A 19,230 P 128 × 128 MSE 0.0333 

Buda et al. (2021) pub ST A 22,032 P Sensitivity 0.60 at 2 FP 

per DBT volume 

Fan et al. (2020) pv t ST A 364 P 256 × 256 Sensitivity 0.90 at 0.80 FP 

per breast 

Li et al. (2020b) pv t ST A 265 I – Sensitivity 0.80 at 1.95 FP 

per volume 

Denoising, reconstruction and synthesis 

Jiang et al. (2019) � pv t ST A 1077 R 512 × 512 SSIM 0 . 629 ± 0 . 196 

Teuwen et al. (2020) pv t PRJ 50 I – SSIM 0 . 89 ± 0 . 01 

Sahu et al. (2019) pv t PRJ 30 P 200 × 200 HaarPSI 0.383 

Wu et al. (2020) pv t PRJ 176 R – SSIM 0 . 0 . 724 ± 0 . 098 

Michielsen et al. (2020) pv t PRJ 52 I – MSE 101 × 10 −6 

Su et al. (2020) pv t PRJ 1000 I 512 × 1024 FWHMs 12 . 9 mm 

Gao et al. (2020) � pv t PRJ 9 P 32 × 32 CNR improved 0.097 

∗pvt is private database, ∗pub is public database, ∗STA is z-Stack, ∗PRJ is projection, ∗RCS is reconstruction, ∗I is image, ∗R is ROI, ∗P is patch 
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iscriminator. The additional information could be any kind, such 

s class labels, images, or words ( Mirza and Osindero, 2014 ). 

. DBT deep learning studies 

In the previous section, we introduced the well-known deep 

earning models used in medical image analysis. In the follow- 

ng subsections, we review studies that employed deep learning in 

BT for assisting cancer diagnostic tasks and non-diagnostic tasks. 

he studies that applied deep learning in DBT are summarized in 

able 4 . 

.1. Diagnostic applications 

For deep learning DBT diagnostic, studies can be grouped into 

wo types: classification and localization. Because of the model se- 

ection and computation resources, the researchers often design 

heir studies to use patches or whole images for classification. Lo- 

alization tasks typically can be grouped into object detection tasks 

nd segmentation tasks. In this section, we review studies that 

lassify images and locate suspicious tumors. 

.1.1. Classification 

Recently, deep learning has been used for mammogram classi- 

cation to power the accuracy of tumor or cancer detection. Many 

tudies have employed various types of deep learning architectures 

not limited to CNN) for breast cancer detection and classification 

 Abdelhafiz et al., 2019 ). In this section, we review studies that 

ave used deep learning for DBT image classification. 

The study by Fotin et al. (2016) compared the boosted deci- 

ion tree method with CNN approaches in cancer (positive or neg- 

tive mass and positive or negative architectural distortion) clas- 

ification using DBT. The CNN model used in their study is iden- 

ical to AlexNet but takes input dimensions as 256 × 256 (ROI). 
8 
hey compared the CNN model sensitivity with that of the boosted 

ecision tree. Because they had few biopsy proven malignancies, 

hey included suspicious images annotated by radiologists as can- 

er. They compared results using the suspicious lesion data set, and 

he biopsy proved malignancy data set. The results showed that 

he CNN (using suspicious included data, sensitivity: 0.893; and 

sing proved malignancy data sensitivity: 0.930) performed bet- 

er compared with the boosted decision tree (using suspicious in- 

luded data, sensitivity: 0.832; and using proved malignancy data, 

ensitivity: 0.852). 

Samala et al. (2018) used two stages transfer learning in their 

roposed model for classifying DBT images as mass or normal. 

n the first stage, the authors employed the pre-trained AlexNet 

odel, trained using ImageNet, and fine-tuned the model using 

FDM images. In the second stage, the pre-trained weights learned 

rom FFDM images are transferred as initials weights for train- 

ng the model using DBT z-Stack images. Rather than using the 

NN directly as a classifier, the CNN at the second stage is used 

or feature extraction. Then, a feature selection method and ran- 

om forest classifier are applied to the extracted features for clas- 

ification ( Samala et al., 2018 ). In the first stage of fine-tuning 

lexNet, 19632 augmented ROI patches from 2454 mass lesions 

ere used. In the second stage of training the model, 9120 ROI 

atches from 228 mass lesions from DBT z-Stack images were 

sed. They compared the performance of the proposed model, 

hen changing the size of model parameters, in terms of AUC. 

hey also applied network pruning to reduce the complexity of 

he model. They showed that after pruning the model, the num- 

er of trainable neurons reduced by 87.2%, the number of train- 

ble parameters reduced by 34.4%, and the number of multipli- 

ations and additions decreased by 95.5%. The result showed an 

UC of 0.90 with pruning the model and an AUC of 0.89 without 

runing. 
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Mendel et al. (2019) used ImageNet pre-trained VGG19 for fea- 

ure extraction in FFDM and DBT images for malignant and benign 

lassification. Features were selected from the VGG19 model after 

ach max pooling layer. Average pooling was performed for feature 

imension reduction. To avoid redundant features, Leave-One-Out 

tep-wise feature selection was performed to obtain the most fre- 

uently selected features. Then, the Leave-One-Out Support Vector 

achine (SVM) classifier was used to estimate the likelihood of 

alignancy. In this study, 78 lesion images, of which 30 are ma- 

ignant, and 48 are benign were used. The ROI patches (dimen- 

ions: 512 × 512 ) were extracted from FFDM images, reconstructed 

D mammography images and DBT z-Stack slice images. The AUC 

etric was used to compare the performance of the model using 

FDM images (CC and MLO view AUC = 0 . 81 ± 0 . 05 , CC view AUC

 0 . 76 ± 0 . 05 and MLO view AUC = 0 . 76 ± 0 . 05 ), 2D reconstructed

mages (CC and MLO view AUC = 0 . 86 ± 0 . 04 , CC view AUC =
 . 81 ± 0 . 05 and MLO view AUC = 0 . 88 ± 0 . 04 ) and DBT z-Stack

lice images (CC and MLO view AUC = 0 . 89 ± 0 . 04 , CC view AUC

 0 . 74 ± 0 . 05 and MLO view AUC = 0 . 83 ± 0 . 04 ). The best AUC in

ass/architectural distortion and calcification detection is for DBT 

-Stack slice images in CC and MLO view (AUC = 0 . 98 ± 0 . 01 and

UC = 0 . 97 ± 0 . 03 , respectively). 

In another work by Singh et al. (2020) , the authors proposed a 

ethod for adapting a deep learning model trained from FFDM im- 

ges to be used for DBT images. In their study, FFDM and DBT im- 

ges were labeled into four classes. The classes are normal (no re- 

arkable finds), benign (notable finds are benign), high-risk (biop- 

ied determined tissue types are highly possible to develop as can- 

er), and malignant (biopsy proved malignant finds). The model —

esNet with 29 layers — was designed to have patches with di- 

ensions of 512 × 512 as input. They first trained the model with 

FDM, then, the authors trained the model with 2D Maximum In- 

ensity Projections(MIP) of DBT images. They applied histogram 

atching on MIP images to match them to the FFDM images. Two 

ne-tuning methods were used in this study: (1) fine-tuning the 

ast two fully connected layers, and (2) fine-tuning just the opti- 

al layers for fine-tuning. The two fine-tuning methods were com- 

ared using histogram matched MIP images and original MIP im- 

ges. The results showed that fine-tuning the last two layers with 

IP-HM has the best performance in terms of AUC (AUC = 0.847). 

In a study by Li et al. (2020a) , they compared several cancer 

lassification models (malignant, benign, or normal) for FFDM and 

BT images. They extracted ROI from FFDM (dimensions: 256 ×
56 ) and DBT (dimensions: 256 × 256 × 16 ). They studied three 

ransfer learning models to analyze DBT and FFDM images: Double 

ransfer Learning (DTL), Mixture of DBT and FFDM (MIX), and Sin- 

le Transfer Learning (STL). The DTL model used two-stage transfer 

earning: the first stage used ImageNet pre-trained VGG, and the 

econd stage used FFDM to train the model again. The MIX model 

sed ImageNet pre-trained VGG and employed a mix of FFDM and 

BT images for training. The STL model used ImageNet pre-trained 

GG. The results showed that the MIX model has the best per- 

ormance in term of AUC (malignant AUC = 0.917, benign AUC = 

.951, and normal AUC = 0.990) when applied to DBT images. 

In the paper by Kim et al. (2016) , they proposed a hierarchi- 

al model — latent bilateral feature representation of asymmet- 

ic breast tissue — for classifying masses. The main idea of their 

odel is classifying masses based on asymmetry between left and 

ight breasts. In their method, first, volume registration was ap- 

lied to DBT’s main view and lateral view (left and right breast). 

hen, the volume of interest (VOI) transform was applied. After 

he VOI transformation, they used a 3D CNN for extracting bilat- 

ral feature representation. The features (extracted by the CNN) of 

he main view and lateral view VOI were concatenated and are in- 

ut into a fully connected layer (dimension: 512) for mass classi- 

cation. The results showed that their proposed model performed 
9 
etter (AUC = 0.847) than the hand-crafted feature classifier (AUC 

 0.826). 

The article by Yousefi et al. (2018) , proposed a model using a 

NN as feature selection and a multi-instance random forests (MI- 

F) model as classifier. In the data pre-processing module, they de- 

oised DBT z-Stack images and augmented images. In addition, the 

ectoral muscle was removed from images. The pre-processed z- 

tack images from each DBT were inputted to a CNN, which has 

hree convolutional and two fully connected layers followed by 

eLU activation, max pooling, and batch normalization layers. The 

onvolutional layers used in this model have 16, 32, and 64 fil- 

er’s depth with the kernel dimension of 5 × 5 . The learned fea- 

ures from z-Stack images are output from the deep CNN. Then, an 

I-RF is used to classify images as benign or malignant. The ML-RF 

sed in this study is formulated based on a multi-instance learner 

nd randomized trees. Their proposed DCNN MI-RF model’s accu- 

acy is 86 . 6% , sensitivity is 87 . 5% , specificity is 87 . 5% , and AUC is

.87. 

In the paper by Zhang et al. (2018) , the authors developed 

everal CNN models for FFDM classification and DBT classifica- 

ion. The data set has 3018 negative and 272 positive mammo- 

ram screens (contained both FFDM and DBT images) in this 

tudy. They used data augmentation and transfer learning in their 

ork. Over all proposed models for FFDM, the 2D-T2-Alex showed 

he best performance (AUC of 0.7274). The 2D-T2-Alex model 

xtracted features (feature dimensions: 25 × 25 × 256 ) from pre- 

rained AlexNet, then employed shallow CNN to classify normal 

r cancer. The shallow CNN contains one convolutional layer with 

ernel size of 1 × 1 and filter’s depth as 256, followed with two 

024 fully connected layers. In the DBT classification, 3D-T2-Alex 

howed the best performance (AUC of 0.6632). The 3D-T2-Alex 

odel used the same network structure as the 2D-T2-Alex model, 

ut used DBT images as input (for each exam, they selected a sub- 

et of DBT frames). 

The same group built up on their prior work mentioned above 

xplored alternative ways to incorporate entire DBT volumes into 

re-trained models designed for 2D data. They explored ways 

o “fuse together” the 2D slice images in the reconstructions 

 Zhang et al., 2019 ). Specifically, they proposed a model that con- 

ists of an early fusion stage and a late fusion stage. In the early 

usion stage, two classification methods have been tested: (i) clas- 

ification using features extracted from pseudo 2D mammogram 

enerated by averaging all slices, and (ii) classification using fea- 

ures extracted from the reconstructed 2D dynamic image which 

s an RGB image summarizing information and appearance from 

 3D sequence of images or z-Stack. In the late fusion stage, pre- 

rained AlexNet is used to extract features from DBT z-Stack im- 

ges. Then, the features are consolidated into a fixed sized feature 

ap for binary classification as benign or malignant. In this study, 

he authors compared the performances of the early fusion stage 

nd the late fusion stage against their 3D-AlexNet model proposed 

n their previous study. 

They also compared the results of the late fusion stage when 

sing different f eature pooling methods including max pooling, 

verage pooling, and minimum pooling. The results showed that 

he late fusion stage when using max pooling and AlexNet trans- 

er learning provides the best performance with an AUC of 0.854. 

he AUC is improved by 22.80% from that of their prior model 

AUC = 0.663). 

Continuing previous work, the group then investigated whether 

raining a CNN model using both FFDM and DBT data from 

he same patient can improve model’s diagnostic performance 

 Liang et al., 2019 ). Their method can be divided into four stages.

he first stage is data pre-processing. In this stage, 2D dynamic 

mages are reconstructed from DBT z-Stack images. Each view of 

-Stack images forms one dynamic image which collects all z- 
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tack image variations. In the second stage, the reconstructed 2D 

ynamic images and FFDM images are input to a deep learn- 

ng model for feature extraction. In the third stage, the AlexNet, 

esNet, DenseNet, and SqueezeNet models are used as the deep 

earning (or backbone) network. The extracted features are input to 

he fourth stage, which has three classifiers. The first classifier clas- 

ifies features from dynamic images. The second classifier classi- 

es features that are concatenated from dynamic images and their 

atching FFDM images. And the third classifier classifies features 

rom FFDM images. An ensemble method, which gives each clas- 

ifier a weight and sums all weighted classifier results, was em- 

loyed for the final output. A private data set containing 415 be- 

ign patients and 709 malignant patients were used in this study. 

ll the data used in this study were biopsy proved. The results 

howed that their ensemble model using the AlexNet model had 

he best performance with an AUC of 0.97. 

Matthews et al. (2020) proposed a CNN model to transfer FFDM 

rained domain to DBT s2D images. The proposed model in this 

tudy was pre-trained ResNet and a data set with 78445 s2D im- 

ges was used. The result showed that the AUC of the proposed 

odel is 0.97. 

Rodriguez-Ruiz et al. (2018) employed a CNN model to clas- 

ify calcification using reconstructed images when employing dif- 

erent DBT reconstruction algorithms (filtered back projection and 

nhanced multiple parameter iterative reconstruction). They used 

 shallow network containing four convolutional layers and three 

ully connected layers. The input dimensions of this model is 29 ×
9 × 3 . The AUC of the CNN model trained with images that are re-

onstructed using the filtered back projection method is 0.857, and 

he AUC of the model trained with images that are reconstructed 

sing the enhanced multiple parameters iterative method is 0.880. 

.1.2. Localization 

In addition to classification, another important tasks in analyz- 

ng biomedical images are cancer localization ( Fig. 2 c and b). Var- 

ous detection and segmentation methods have been proposed for 

D medical images. However, few studies have been published for 

ancer localization and segmentation for DBT images. Marking ab- 

ormalities on DBT slices requires experienced radiologists to re- 

iew each frame from the DBT z-Stacks and identify tumor loca- 

ions, which is extremely time consuming considering the number 

f slices per DBT scanning. Further, the public database for DBT 

mages is very limited. In this section, we will review the object 

etection and segmentation models proposed for DBT images. 

In the paper by Lotter et al. (2019) , the authors proposed a 

hree-stage model. In the first stage, a pre-trained ResNet model 

as trained using FFDM patches for classification (mass, calcifica- 

ions, focal asymmetry, architectural distortion, and normal). In the 

econd stage, the trained ResNet was used as a backbone model 

or RetinaNet. In this stage, full FFDM images were used for lesion 

ocalization. The third stage consists of two parts: (1) In part A, 

ultiple-instance learning (MIL) — used class likelihoods of mul- 

iple bounding boxes for an image — was used to classify FFDM 

mages, and (2) in part B, MIL was used to classify optimized 2D 

mages condensed from DBT z-Stack (ROI extracted from stage two 

odel using z-Stack). The AUC of their proposed model is 0.945. 

Fan et al. (2019) introduced a CNN based deep learning method 

sing Faster RCNN for mass detection in DBT images. In this work, 

he authors proposed three modules: (1) module A is for pre- 

rocessing DBT z-Stack images; (2) module B uses the Faster RCNN 

odel (RCNN-based model) for efficient mass detection; and (3) 

odule C uses a deep CNN (DCNN-based model) for reducing False 

ositives (FPs) and for comparing the RCNN-based model with the 

CNN-based model. 

In module B, the DBT z-Stack images were passed into the 

aster RCNN model one by one to generate bounding boxes for 
10 
ach image (slice) with a score to show the likelihood of mass 

confidence score of detected mass). The bounding box of a mass 

as identified by merging all the bounding boxes from the same 

et of DBT z-Stack images that have overlapping ratios (intersec- 

ion over union ratios) greater than 0.5. The probability of detected 

ass was assigned by the highest confidence score for each image 

n one set. In module C, the CNN-based model used pre-screening 

teps for identifying candidate ROI of masses by ranking the 3D 

radient field convergence maps’ gradient values and selecting the 

op 10% ROI. For reducing FP rates, these top rank ROI were in- 

ut into the DCNN with 22 layers. The classification score was 

btained using the maximum prediction scores from the top five 

OI. To compare the results between the RCNN-based and DCNN- 

ased models, the authors used free-response ROC (FROC) curves 

hat showed a figures-of-merit (FOM) of 0.4374, and a p-value of 

.0011, which suggests that the RCNN-based CAD model performs 

etter compared to the DCNN-based model. 

More recently, the same group of researchers compared this 

D-slice–based system to a fully 3D volumetric model ( Fan et al., 

020 ). In their study, they designed a 3D version of the Mask- 

CNN model in order to perform segmentation on the same recon- 

tructed volumes from their previous study. The proposed model 

akes patches with the dimension of 256 × 256 × 64 as input. In 

heir model, ResNet-Feature Pyramid Network (ResNet-FPN) was 

sed as the backbone. The ResNet-FPN extracted different scales 

f features. In the Feature Pyramid Network (FPN), different scaled 

eatures were combined. The Bounding boxes of input images were 

enerated from RPN. Segmentation masks were produced from the 

ask branch from each ROI using a FCN. Comparing this model to 

heir prior work, they saw better performance (sensitivity of 90% 

ith 0.8 FPs per breast) compared with both 2D-Mask-RCNN (sen- 

itivity of 90% with 1.24 FPs per breast) and Faster RCNN (sensitiv- 

ty of 90% with 02.38 FPs per breast). 

Lai et al. (2020) proposed a method that employed U-Net to 

egment DBT images. There are six stages in their method: data 

re-processing, patch extraction, data augmentation, U-Net seg- 

entation, voting stage, and post-processing. In the data pre- 

rocessing stage, image contrast was enhanced by applying a top- 

at transform. In the patch extraction stage, images were split into 

atches to increase the number of data. For data augmentation, 

atches were rotated by 90 degrees. They used a 23 layers U-Net 

odel for segmentation. After segmentation, the final prediction 

sed one of three voting techniques: (1) majority voting in, by 

hich the final image label was selected from majority class labels 

f predicted patches, (2) maximum probability in, by which the fi- 

al image label was selected from the label of the predicted patch 

ith the highest probability, and (3) sum of probabilities in, which 

redicted patch probabilities are summed and the largest proba- 

ility over all classes as final prediction class is selected. In the 

ost-processing stage, segmentation was predicted from U-Net, in 

hich less than 50 voxels in volumes were removed as volumetric 

onstraints. They compared the performance of their model to lin- 

ar discriminant analysis, support vector machine, CNN, and neu- 

al network in terms of AUC. Their model out performed the other 

ethods and showed an AUC of 0.859. 

In the study by Buda et al. (2021) , the authors employed 

 deep learning model to detect masses and architectural dis- 

ortions using a data set containing 5610 cases from 5060 pa- 

ients. 5129 of cases are normal (no abnormal findings), 280 

re not biopsy-proven cases (abnormal finds in the report but 

ot biopsy-proven as abnormal), 112 are biopsy-proven benign, 

nd 89 are biopsy-proven cancer (at least one mass or architec- 

ural distortion finds). They developed a single-stage deep learn- 

ng model to detect masses and architectural distortions. The re- 

earch group makes the data set (from Duke Health System) 

ublicly available at The Cancer Imaging Archive (TCIA) website 
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 https://www.cancerimagingarchive.net ). The study applied data 

reprocessing by window-leveling images (adjust the image ap- 

earance to highlight specific structures), downscaling each slice, 

emoving skin, and extracting the breast region. The proposed 

odel is a single-stage CNN (they employed YOLO) for 2D object 

etection with DenseNet ( Huang et al., 2017 ). The authors divided 

ach input image into 96 × 96 patches. The network outputs a con- 

dence score containing the center point of a bounding box for 

ach cell (each cell predicts only one bounding box). During train- 

ng, for positive samples (cancer), they only selected slices that 

ontain abnormal tumors. The authors tested different loss func- 

ions in the experiment, including binary cross-entropy, weighted 

inary cross-entropy, focal loss, and reduced focal loss. The results 

howed that their model performed best using focal loss, with a 

ensitivity of 60% at 2 FPs per DBT volume. 

More recently, the same group proposed a unique method for 

nomaly detection using GANs ( Swiecicki et al., 2020 ). In this 

tudy, the authors designed a GAN to generate “normal” breast tis- 

ue images using normal DBT data. After training, the model blocks 

ut patches in the test data in a sliding-window fashion and has 

he GAN attempts to fill in the patches. In theory, if there is a 

ignificant deviation between the generated patch and the origi- 

al patch, then the region has a high probability not be “normal.”

hough it is a preliminary study, early results indicate that dif- 

erences between lesions and their GAN-generated counterpart are 

isually conspicuous, and the average pixel intensity difference be- 

ween the two is about twice that seen with normal patches. 

While most of the previous studies have attempted to iden- 

ify masses and microcalcifications (both more easily circumscrib- 

ble anomalies), special mention is deserved to the recent work of 

i et al. (2020b) , in which the authors designed a model specif- 

cally to detect architectural distortions using mammary glands 

istribution as prior information. The mammary glands distribu- 

ion includes Gabor magnitude, Gabor orientation field, and con- 

ergence map. Gabor magnitude and Gabor orientation field are 

btained by using the Gabor filter. The convergence map is ob- 

ained by convergence measure, which measures convergent pix- 

ls that are oriented towards the center circle in nested two 

oops. That prior information and DBT slices fed into a Faster 

CNN model to predict 2D candidates from each slice. 3D candi- 

ates of each DBT volume were finally generated based on fused 

D candidates using a 3D aggregation scheme. The 3D aggrega- 

ion scheme employed density-based spatial clustering to cluster 

D candidates. The 2D binary candidate masks belonged to the 

ame cluster are concatenated together. The results showed that 

heir proposed model has a sensitivity of 80% with 1.95 FPs per 

olume. 

.2. Non-diagnostic applications 

Besides directly improving the detection accuracy of the cancer 

etection models, enhancing the consistency and quality of PVs, 

ynthetic images and reconstruction images will also assist the di- 

gnostic process. Many traditional image reconstruction algorithms 

ave been widely applied to medical images such as filtered back 

rojection, algebraic reconstruction, statistical reconstruction, iter- 

tive sparse asymptotic minimum variance, and learned iterative 

econstruction. In addition, to reconstruct images as a stack of par- 

llel planes, a variety of competing reconstruction techniques have 

een developed ( Suryanarayanan et al., 2001; Zhou et al., 2015; 

hu et al., 2020; Krammer et al., 2019 ). However, DBT reconstruc- 

ion using deep learning is still an open area. Recently, a few stud- 

es have explored developing deep learning models to reconstruct 

edical images. In this section, we review studies focusing on 

eep learning for DBT denoising, generating DBT s2D images and 

BT reconstruction images. 
11 
.2.1. Denoising 

In the paper by Sahu et al. (2019) , a GAN was used for denois-

ng the DBT projections. The proposed model contains a generator 

hat learns the distribution of data and discriminator, which pre- 

icts the label of input images (fake or real). The proposed model 

akes patches ( 200 × 200 ) of DBT projections images. To evaluate 

heir model, they used the Haar Wavelet-Based Perceptual Similar- 

ty Index (HaarPSI), which measures the similarity of two images 

n the range of [0,1]. A HaarPSI closer to 1, the better the similarity 

ill be. They compared their denoise DBT projection results with 

he Mean Squared Error (MSE) loss based CNN denoise model, K- 

VD, and Block-Matching and 3D Filtering (BM3D) denoising algo- 

ithms. The results showed that the proposed GAN model has the 

est performance in terms of HaarPSI (0.383) compared with the 

SE loss CNN (0.367), KSVD (0.295), and BM3D (0.2851) models. 

Gao et al. (2020) have developed a CNN denoising system 

or microcalcifications which is applied to PVs: they show that 

fter reconstruction using simultaneous algebraic reconstruction 

echnique, this denoising system actually improves the contrast 

f microcalcifications, theoretically enhancing human detection of 

hese lesions. The authors used 9 projection images (generated 

atches with dimension as 32 × 32 ) in their study. The patches was 

rouped into subtle, medium, and obvious depends on the micro- 

alcifications’ nominal sizes. The authors showed the CNR values 

f subtle, medium, and obvious after denoising was improved by 

 . 7% , 9 . 7% , and 9 . 5% compared with before denoising. 

.2.2. Generate s2D 

The study by Jiang et al. (2019) proposed using a GAN to syn- 

hesize realistic DBT s2D using reconstructed DBT volumes. This 

esearch aims to replace FFDM with DBT s2D. In the paper, a Gra- 

ient Guided cGANs (GGGAN) was proposed. The GGGAN used gra- 

ient of s2D and FFDM as additional inputs to the GGGAN’s dis- 

riminator. In other words, the gradient feature extracted from an 

2D paired with the s2D to compose a fake pair of images, and gra- 

ient feature extracted from an FFDM image paired with the FFDM 

mage to compose a real pair. These real and fake pairs were used 

o train the discriminator. A U-net model was used for GGGAN’s 

enerator model. To generate s2Ds, the input of the U-net model is 

ulti-scaled DBT images, and output is simulated images as s2Ds. 

he data set used in this study contains 1077 pairs of DBTs and 

FDMs. To evaluate their model, they employed three radiologists 

o compare the quality of s2Ds generated from GGGAN with s2Ds 

enerated from cGANs using FFDM images. One thousand pairs of 

BTs and FFDMs were randomly selected. All of the examinations 

y the radiologists showed that the s2Ds generated from GGGAN 

nd cGAN have better quality compared with the real FFDM im- 

ges, where GGGAN can generate better quality s2Ds compared to 

GAN. 

.2.3. Image reconstruction 

Teuwen et al. (2020) proposed a deep learning model DBToR 

or DBT reconstruction from PVs. The DBToR — containing a cou- 

le of reconstruction blocks — takes projection images and the 

reast thickness as initial inputs. The DBToR is a CNN-based model 

hat used the L 2 loss function. The data set they used for exper- 

ments were phantom projections and breast CT. For noise-free 

hantom projection data, they compared the SSIM of the pro- 

osed model ( 0 . 89 ± 0 . 01 ) with those of the Maximum Likelihood 

or Transmission (MLTR) ( 0 . 83 ± 0 . 042 ) and Learned Primal-Dual 

LPD) ( 0 . 38 ± 0 . 18 ) models. For breast CT, the SSIM of the proposed

odel and MLTR are 0.93 and 0.82, respectively. 

Building upon their previous work, Michielsen et al. (2020) , 

roposed reconstruction methods that use a low-resolution deep 

earning model to predicted reconstruction as initialization for 

https://www.cancerimagingarchive.net
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 high-resolution iterative algorithm. The low-resolution DBToR- 

 reconstruction method, which is a memory-optimized version 

f DBToR ( Teuwen et al., 2020 ), was used as initialization with 

LTR algorithm to produce the final DBT reconstruction. The au- 

hor compared the proposed model MSE with that of vanilla MLTR 

without initialization). The results showed the MSE of DBToR-X 

nitialized MLTR is 101 × 10 −6 and the MSE of vanilla MLTR is 

77 × 10 −6 . 

In the study by Wu et al. (2020) , they proposed a method that

sed decoupled unrolled network to improve the contrast and in- 

epth resolution of DBT reconstruction images. The authors also 

roposed a novel ROI loss function for adding attention to the re- 

ion of microcalcifications. The decoupled unrolled network em- 

loyed U-net to replace the penalty function of the iterative re- 

onstruction algorithm (IR) and unrolled the proximal gradient de- 

cent to finite iterations. The network loss used weighted summa- 

ion of whole-volume L 2 loss and microcalcification ROI L 2 loss. 

he experiment used 176 DBT of realistic breast phantoms. To eval- 

ate the model’s performance, the authors compared the perfor- 

ance of the proposed model with and without employing IR in 

erms of Relative Mean Squared Error (RMSE) and SSIM. The results 

howed that the proposed model using the ROI loss has the best 

erformance (RMSE = 0 . 041 ± 0 . 005 , SSIM = 0 . 724 ± 0 . 098 ) com- 

ared with using IR (RMSE = 0 . 103 ± 0 . 015 , SSIM = 0 . 656 ± 0 . 123 ).

Another study by Su et al. (2020) proposed a novel method 

IR-DBTnet, which employed deep learning with the standard it- 

rative reconstruction algorithm. The authors employed the alter- 

ating direction method of multipliers (ADMM) — divides complex 

bjective function into several subproblems — to solve DBT recon- 

truction problem. The authors used CNN extracted information as 

egularizer in ADMM, and iterated parameters as learnable vari- 

bles. The network structure contains three parts: the reconstruc- 

ion module, denoising module, and multiplier update module. The 

enoising module employed a CNN to generate denoised images. In 

he experimental study, simulated DBT sinogram-label pairs data 

ere used. 

. Discussion 

Several deep-learning–based CAD systems for DBT are cur- 

ently available, and many new systems will be developed. How- 

ver, there are still numerous challenges to be overcome. As 

ang et al. (2020b) recently demonstrated, even peer-reviewed, 

ublished models for FFDM classification fail when applied to dif- 

erent data sets, even when those data sets include acquisitions 

sing similar equipment. Nonetheless, the trained radiologist can 

dapt when looking at different data sets, indicating that high- 

erforming deep learning models are still missing the “key” fea- 

ures which distinguish disease from normal. 

.1. The role of reconstruction 

The concept of image reconstruction (i.e. tomosynthesis) in DBT 

s unique when compared to other common imaging modalities. 

FDMs are fundamentally single X-ray images bounded by physical 

onstraints. By contrast, fully-3D methods such as CT represent a 

ell-defined inverse problem with an optimal (but not necessar- 

ly easy to compute) reconstruction. DBT PVs have a limited angle 

ange, resulting in less information regarding abnormalities. As a 

esult, there is no deterministic optimal reconstruction: in fact, it 

s unclear even what an “optimal” reconstruction should look like. 

hile detection models operating on reconstructed or s2D images 

ave shown success, further development of reconstruction meth- 

ds can pose new challenges for such detection models. 

As previously noted, several detection models use the origi- 

al PVs, which it may be one way to produce a reconstruction- 
12 
ethod–invariant detection model. Interestingly, it appears that 

his push-and-pull of detection and reconstruction may be leading 

o the co-development of two different but equally important ap- 

lications of deep learning for DBT analysis: low-level models can 

se “raw” data for detection purposes, while higher-level models 

an develop reconstructions optimized for human-eye–based de- 

ection and diagnosis. The composition of these two levels of deep- 

earning models may produce an optimal result for patients. Low- 

evel detection models can operate on data that has not been pre- 

rocessed but may be harder for humans to interpret, and then 

hese possible lesions can be projected onto reconstructions opti- 

ized for scrutiny by radiologists and surgeons. As has been noted 

.g. Pisano, 2020 ), one major concern related to AI detection mod- 

ls is their interpret-ability that their underlying algorithms make 

t difficult for physicians to communicate findings to patients and 

or both patients and physicians to trust these findings. This paired 

odel structure may mitigate some of these issues by displaying 

hese detected latent lesions more clearly on an visually-optimized 

mage to facilitate better communication and understanding. 

.2. How many dimensions? 

Because tomosynthesis lies in this quasi-3D domain, the ques- 

ion of whether to use 2D or 3D models is central to creating effec- 

ive diagnostic tools. In the studies we reviewed in this work, most 

tudies employed 2D model using DBT slices as independent im- 

ges to overcome the problem of limited computational resources. 

owever, this independent assumption does not take advantage of 

BT volume data, which is corresponding to tissue relation be- 

ween each slice. Building a 3D model which takes volume as in- 

ut and learns underlying features between each slice is necessary. 

owever, unlike MRI, DBT volumes are high resolution. Using high 

esolution data to train a 3D model requires huge computation re- 

ources that are often unpractical. Moreover, resizing a DBT volume 

s not recommended since scaling down the resolution may result 

n losing the characteristics of the tumors as can be seen in Fig. 4 . 

All of this information is also important as researchers wran- 

le with 3D-CNN models which are significantly more complex 

nd computationally demanding. However, because 3D CNNs rely 

n reconstructed images, it remains unclear whether these sys- 

ems actually will outperform 2D CNNs on the s2D of the same re- 

onstructed images, with conflicting results thus far ( Zhang et al., 

018; Fan et al., 2020 ). Preliminary results indicate that not only 

arge training sets, but also full-resolution (not downsampled) in- 

uts greatly improve diagnostic capability ( Seyyedi et al., 2020 ). 

.3. Domain-crossing 

One change can help improve clinical implementation is the use 

f a common language for evaluating and comparing models. As 

oted in Table 5 , clinicians and computer scientists evaluate mod- 

ls in fundamentally different ways. While many diagnostic tests 

se metrics such as sensitivity, specificity and ROC integrals to di- 

gnostic evaluation, screening imaging is not diagnostic imaging. 

ince high specificity is required for diagnostic, it is unlikely that 

issue biopsy will be replaced as the gold standard for cancer di- 

gnosis in the near future. As a result, in practice, the question 

s whether to recall the patient for further workup, which impose 

dditional cost and anxiety or not ( Fig. 7 ). 

We believe that developing a common set of metrics for 

oth clinical and computational evaluation will go a long way 

oward allowing for the objective comparison of different AI- 

AD models. Some of these differences are being bridged al- 

eady. For example, (likely because of its clear commercial appli- 

ations) optimizing reading time has been a particularly good ex- 

mple of this domain-crossing to improve clinical practice. How- 
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Table 5 

Some of the most commonly-used metrics to compare ML models. While the classical objective metrics of screening test performance are useful for comparing ML 

models (especially when using a binary classifier), adoption of any model depends on improving patient and staff quality metrics as well. 

Classical metrics 

Sensitivity The ability to detect abnormalities of any significance TP 
TP+ FN 

Specificity The ability to discriminate between cancerous and non-cancerous lesions TN 
TN+ FP 

Area under ROC curve (AUC) An approximation of the probability that a TP will be viewed as “more abnormal” than a TN 

Practical metrics 

Recall rate Percentage of patients who require additional imaging or procedures following a screening mammogram 

Cancer detection rate Percentage of cancers diagnosed in all patients (after recall) 

PPV1 Positive predictive value of abnormal screening mammogram (Fraction of recalls leading to proven diagnosis of malignancy) 

Average Glandular Dose (AGD) Amount of radiation delivered to sensitive tissue 

Reading time Time spent by physician reading mammogram 

Cost Includes fixed costs as well as technician and radiologist time 

Fig. 3. DBT selected slices from a z-Stack and reconstructed 2D view. The white circle indicates the location of the malignant mass. 
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ver, we still are seeing improvement on this front. As an example, 

eyyedi et al. (2020) used a novel set of classifiers: “normal,” “be- 

ign,” and “further workup needed,” which appears to better align 

ith clinical objectives. 

.4. Data curation and availability 

One major DBT-specific challenge is proper data curation and 

abeling. However, this does not take into account the volumet- 

ic nature of reconstructions (or the overlapping regions in PVs), 

hich both add significantly to the complexity and labor of curat- 

ng data. Marking tumors in 3D is certainly a harder task, and the 

est way to draw boundaries is unclear, especially when many of 

he aforementioned models using overlapping boundary boxes on 

ach 2D-slice for detection. 

Looking only at 2D slices, it is still unclear whether models op- 

rate better using abnormalities labeled using bounding boxes or 

ightly-drawn margins of lesions ( Wang et al., 2020a ). This chal- 

enge is compounded by the additional dimensions and images in 

BT. As Fig. 3 shows, malignant tumor boundaries present differ- 

ntly depending on how close the slice is to the center of the tu- 

or. Hence, labeling DBT slices at pixel level remains a challenge. 

DBT studies easily require more storage than FFDM by an order 

f magnitude or more. While most of the aforementioned stud- 

es used small, potentially non-generalizable data from private data 

ets, we remain optimistic on the data availability front. The recent 

elease of the first publicly-accessible annotated DBT dataset will 

llow many more researchers to experiment with different cura- 

ion techniques, and we applaud Buda et al. (2021) for making such 
13 
 valuable resource widely available. Hopefully others will follow 

his effort, allowing a broader community of researchers to explore 

ll of these avenues in greater detail. 

.5. Lesion classification 

As previously discussed, one demonstrated advantage of DBT 

s its ability to distinguish small lesions which may obscured 

n the projections obtained using FFDM. According to the Breast 

maging-Reporting and Data System (BI-RADS), cancerous lesions 

re identified using four hallmarks: (1) the presence of asymme- 

ry, (2) a mass, (3) microcalcifications or (4) architectural distortion 

 D’Orsi, 2014 ). Different methods work better for each type of ab- 

ormality, although most work has focused on masses and micro- 

alcifications, which are easier to label and bound than the other 

wo types of abnormalities. However, identifying the distortions 

hich are not as easy to annotate is one of the real strengths of 

D imaging. Li et al. (2020b) reasonably claim that FFDM is unable 

o make such structure maps because of the significant amount of 

verlapping tissue, suggesting that AI-CAD systems for DBT may be 

ble to find diagnoses that were previously impossible to find us- 

ng FFDM. As such, there is an important role for general anomaly 

etection methods which are insensitive to the type of abnormal- 

ty and which do not necessarily attempt to localize a particular 

esion. 

Intuitively, the identification of “smoother” masses seems to re- 

uire a different approach when compared to the “sharp” delin- 

ation of microcalcifications, although some new methods show 

ome promise for handling general anomalies. 
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Fig. 4. Mammograms with microcalcification in two different resolutions. The yellow box indicates the location of malignant microcalcification. a. image resize of 332 × 256 

b. image with original dimension as 3328 × 2560 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The heat map of previous year exam vs. current year exam. Top row image are current year examinations and bottom row image are previous year examinations 

a. Mass tumor comparison between the previous year and current year. Yellow box indicates mass identified by radiologists. b. Normal breast mammogram comparison 

between the previous year and current year. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

p

o

5

c

i

F

2

y

f

t

c

k

d

h

a

F

w

p

s

t

i

These systems appear to be successful based on these small 

reliminary studies, and we look forward to future results based 

n such detection methods in the future. 

.6. Prior images and previously occult tumors 

The availability and incorporation of prior imaging studies with 

urrent ones is an essential component of radiology practice. This 

s certainly true in mammography, and models using prior normal 

FDM images appear to improve diagnostic accuracy ( Park et al., 

019 ). In clinical practice, radiologists always compare the previous 

ear’s exam with the current year’s exam to observe tissue changes 

or diagnosing cancer (as Fig. 5 demonstrated tissue changes from 
14 
he previous year exam to the current year exam in both can- 

er and normal cases). Studies can further integrate related prior 

nowledge in the form of patients’ clinical information to improve 

iagnostic accuracy, and previous year mammogram examination 

as not been studied for developing deep learning models for an- 

lyzing DBT images. 

While more work on such multimodal methods is needed as 

ig. 6 illustrates, it is also interesting to think about how such 

ork may expand the frontiers of breast imaging. As an exam- 

le, Arefan et al. (2020) built a model which attempts to estimate 

hort-term cancer risk using normal prior FFDM images. In addi- 

ion to better estimating cancer risk, it is possible that such stud- 

es can also be used to find previously occult tumors and improve 
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Fig. 6. Comprehensive CAD system. a. An embedding deep learning model in the current year exam for high-quality DBT reconstruction. b. and c. integrate cancer risk factor 

and exam history as input to a comprehensive deep learning model to predict cancer segmentation, breast density, cancer location, and the final possibility of breast cancer. 

Fig. 7. An abbreviated flowchart outlining the key decisions and procedures lead- 

ing from screening mammography to definitive cancer diagnosis. Despite effective 

standardization tools, the American College of Radiology still leaves the medical 

decision-making to the radiologist ( ACR, 2018 ), and practices can differ (see e.g. 

Ebuoma et al., 2015 ). 
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arly diagnosis. Some of these images may in fact not be truly nor- 

al, and may contain abnormal features that only a sophisticated 

eep learning model might extract. We look forward to further re- 

earch in this area. 

. Conclusions 

Closing the gap between the aims of the computer scientist and 

he clinician will be essential to the integration of deep learn- 
15 
ng models into clinical workflows. One of the key distinctions 

etween the computational researcher’s goals and the clinician’s 

oals is the determination of “benign” and “malignant”. In reality, 

hese designations represent a spectrum between fully inert and 

ighly lethal, and decisions are made by taking a patient’s entire 

ase and medical history into account. 

One can argue that determining the level of lethality from a 

imple mammogram or DBT study may not be the true endpoint, 

s it would still be prudent to employ other imaging methods and 

iopsy techniques prior to taking a patient to the operating room. 

For FFDMs, deep-learning–based detection models have been 

hown to perform with near-human accuracy ( McKinney et al., 

020 ); as more studies and data become available, there is no rea- 

on to believe that this should be any different for DBT. 

However, it is also evident that the most effective models - 

pecifically their components and structures - differ from those 

sed for the analysis of conventional (i.e. non-diagnostic) images. 

onetheless, one can see that the use of deep learning for auto- 

atic breast cancer detection in DBT can have a clear benefit for 

ealthcare throughput and cost reduction. 

The ways in which deep learning models have been adapted for 

his emerging technology comprise an important case study into 

ow AI-based tools can adapt to new, yet-undiscovered imaging 

echnologies. Open problems specific to DBT such as optimal re- 

onstruction methods for human interpretation demonstrate how 

he next generation of deep learning models must be developed 

and-in-hand with the next generation of imaging technologies. 

ith many recent successes in the application of deep learning 

odels to DBT studies, we look forward to discovering even more 

ovel ways of seamlessly bridging the gap between the computa- 

ional and clinical domains. 
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